4.7 Article

Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker

Journal

PLANT BIOTECHNOLOGY JOURNAL
Volume 15, Issue 7, Pages 817-823

Publisher

WILEY
DOI: 10.1111/pbi.12677

Keywords

Xanthomonas citri; Cas9; sgRNA; Citrus paradisi

Funding

  1. Florida Citrus Research and Development Foundation

Ask authors/readers for more resources

Citrus is a highly valued tree crop worldwide, while, at the same time, citrus production faces many biotic challenges, including bacterial canker and Huanglongbing (HLB). Breeding for disease-resistant varieties is the most efficient and sustainable approach to control plant diseases. Traditional breeding of citrus varieties is challenging due to multiple limitations, including polyploidy, polyembryony, extended juvenility and long crossing cycles. Targeted genome editing technology has the potential to shorten varietal development for some traits, including disease resistance. Here, we used CRISPR/Cas9/sgRNA technology to modify the canker susceptibility gene CsLOB1 in Duncan grapefruit. Six independent lines, DLOB2, DLOB3, DLOB9, DLOB10, DLOB11 and DLOB12, were generated. Targeted next-generation sequencing of the six lines showed the mutation rate was 31.58%, 23.80%, 89.36%, 88.79%, 46.91% and 51.12% for DLOB2, DLOB3, DLOB9, DLOB10, DLOB11 and DLOB12, respectively, of the cells in each line. DLOB2 and DLOB3 showed canker symptoms similar to wild-type grapefruit, when inoculated with the pathogen Xanthomonas citri subsp. citri (Xcc). No canker symptoms were observed on DLOB9, DLOB10, DLOB11 and DLOB12 at 4 days postinoculation (DPI) with Xcc. Pustules caused by Xcc were observed on DLOB9, DLOB10, DLOB11 and DLOB12 in later stages, which were much reduced compared to that on wild-type grapefruit. The pustules on DLOB9 and DLOB10 did not develop into typical canker symptoms. No side effects and off-target mutations were detected in the mutated plants. This study indicates that genome editing using CRISPR technology will provide a promising pathway to generate disease-resistant citrus varieties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available