4.7 Article

The association of hormone signalling genes, transcription and changes in shoot anatomy during moso bamboo growth

Journal

PLANT BIOTECHNOLOGY JOURNAL
Volume 16, Issue 1, Pages 72-85

Publisher

WILEY
DOI: 10.1111/pbi.12750

Keywords

shoot anatomy; endogenous hormone; fast growth; moso bamboo; hormone signalling genes

Funding

  1. Fundamental Research Funds for the Central Research Institution [1632017004]
  2. National High Technology Research and Development Program of China 'Moso Bamboo Functional Genomics Research' [2013AA102607-4]

Ask authors/readers for more resources

Moso bamboo is a large, woody bamboo with the highest ecological, economic and cultural value of all the bamboo types and accounts for up to 70% of the total area of bamboo grown. However, the spatiotemporal variation role of moso bamboo shoot during growth period is still unclear. We found that the bamboo shoot growth can be divided into three distinct periods, including winter growth, early growth and late growth based on gene expression and anatomy. In the early growth period, lateral buds germinated from the top of the bamboo joint in the shoot tip. Intercalary meristems grew vigorously during the winter growth period and early growth period, but in the late growth period, mitosis in the intercalary meristems decreased. The expression of cell cycle-associated genes and the quantity of differentially expressed genes were higher in early growth than those in late growth, appearing to be influenced by hormonal concentrations. Gene expression analysis indicates that hormone signalling genes play key roles in shoot growth, while auxin signalling genes play a central role. In situ hybridization analyses illustrate how auxin signalling genes regulate apical dominance, meristem maintenance and lateral bud development. Our study provides a vivid picture of the dynamic changes in anatomy and gene expression during shoot growth in moso bamboo, and how hormone signalling-associated genes participate in moso bamboo shoot growth.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available