4.7 Article

BASIC PENTACYSTEINE Proteins Repress ABSCISIC ACID INSENSITIVE4 Expression via Direct Recruitment of the Polycomb-Repressive Complex 2 in Arabidopsis Root Development

Journal

PLANT AND CELL PHYSIOLOGY
Volume 58, Issue 3, Pages 607-621

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcx006

Keywords

ABI4; Arabidopsis; BPC; LR development; PRC2

Funding

  1. Ministry of Agriculture of China [2016ZX08009003- 005]
  2. Strategic Priority Research Program of CAS [XDB17030100]

Ask authors/readers for more resources

Plant transcription factors generally act in complex regulatory networks that function at multiple levels to govern plant developmental programs. Dissection of the interconnections among different classes of transcription factors can elucidate these regulatory networks and thus improve our understanding of plant development. Here, we investigated the molecular and functional relationships of the transcription factors ABSCISIC ACID INSENSITIVE 4 (ABI4) and members of the BASIC PENTACYSTEINE (BPC) family in lateral root (LR) development of Arabidopsis thaliana. Genetic analysis showed that BPCs promote LR development by repressing ABI4 expression. Molecular analysis showed that BPCs bind to the ABI4 promoter and repress ABI4 transcription in roots. BPCs directly recruit the Polycomb Repressive Complex 2 (PRC2) to the ABI4 locus and epigenetically repress ABI4 expression by catalyzing the trimethylation of histone H3 at Lys27. In addition, BPCs and ABI4 co-ordinate their activities to fine-tune the levels of PIN-FORMED1, a component of the auxin signaling pathway, and thus modulate LR formation. These results establish a functional relationship between two universal and multiple-role transcription factors, and provide insight into the mechanisms of the transcriptional regulatory networks that affect Arabidopsis organogenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available