4.7 Article

Quasi-quadratic elements for nonlinear compressible and incompressible elasticity

Journal

COMPUTATIONAL MECHANICS
Volume 62, Issue 2, Pages 213-231

Publisher

SPRINGER
DOI: 10.1007/s00466-017-1494-0

Keywords

Finite elements; Large deformation; Nonlinear elasticity

Ask authors/readers for more resources

This work deals with novel triangular and tetrahedral elements for nonlinear elasticity. While it is well-known that linear and quadratic elements perform, respectively, poorly and accurately in this context, their cost is very different. We construct an approximation that falls in-between these two cases, which we refer to as quasi-quadratic. We seek to satisfy the following: (1) absence of locking and pressure oscillations in the incompressible limit, (2) an exact equivalence to quadratic elements on linear problems, and (3) a computational cost comparable to linear elements on nonlinear problems. Our construction is formally based on the Hellinger-Reissner principle, where strains and displacement are interpolated linearly on nested meshes, but it can be recast in a pure displacement form via static condensation. We show that (1) and (2) are fulfilled via numerical studies on a series of benchmarks and analyze the cost of quadrature in order to show (3).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available