4.7 Article

Multistable dissipative breathers and collective states in SQUID Lieb metamaterials

Journal

PHYSICAL REVIEW E
Volume 98, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.98.012207

Keywords

-

Funding

  1. Ministry of Education and Science of the Russian Federation [K2-2017-006]
  2. European Union under project NHQWAVE [MSCA-RISE 691209]

Ask authors/readers for more resources

A SQUID (Superconducting QUantum Interference Device) metamaterial on a Lieb lattice with nearest-neighbor coupling supports simultaneously stable dissipative breather families which are generated through a delicate balance of input power and intrinsic losses. Breather multistability is possible due to the peculiar snaking flux amplitude-frequency curve of single dissipative-driven SQUIDs, which for relatively high sinusoidal flux field amplitudes exhibits several stable and unstable solutions in a narrow frequency band around resonance. These breathers are very weakly interacting with each other, while multistability regimes with a different number of simultaneously stable breathers persist for substantial intervals of frequency, flux field amplitude, and coupling coefficients. Moreover, the emergence of chimera states as well as temporally chaotic states exhibiting spatial homogeneity within each sublattice of the Lieb lattice is demonstrated. The latter of the states emerge through an explosive hysteretic transition resembling explosive synchronization that has been reported before for various networks of oscillators.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available