4.7 Article

Chemical profile and defensive function of the latex of Euphorbia peplus

Journal

PHYTOCHEMISTRY
Volume 136, Issue -, Pages 56-64

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.phytochem.2016.12.021

Keywords

Euphorbia peplus; Euphorbiaceae; Latex; Terpenoids; Defensive function

Funding

  1. National Science Fund for Distinguished Young Scholars [31525005]
  2. National Basic Research Program of China (973 Program) [2013CB127505]
  3. National Natural Science Foundation of China [31200263]
  4. Youth Innovation Promotion Association of the Chinese Academy of Sciences

Ask authors/readers for more resources

Plant latex is an endogenous fluid secreted from highly specialized laticifer cells and has been suggested to act as a plant defense system. The chemical profile of the latex of Euphorbia peplus was investigated. A total of 13 terpenoids including two previously unknown diterpenoids, (2S*,3S*,4R*,5R*,6R*,8R*,l1R*,13S*,14S*,15R*, 16R*)-5,8,15-triacetoxy-3-benzoyloxy-11,16-dihydroxy-9oxopepluane and (2R*,3R*, 4S*,5R*,7S*,8S*,9S*,l3S*,14S*,15R*)-2,5,8,9,14-pentaacetoxy-3-benzoyloxy15-hydroxy-7-isobutyroyloxyjatropha-6(17),11E-diene), ten known diterpenoids, and a known acyclic triterpene alcohol peplusol, were identified, using HPLC and UPLC-MS/MS analyses and through comparison with the authentic compounds isolated from the whole plant. The diterpenoids exhibited significant antifeedant activity against a generalist plant-feeding insect, the cotton bollworm (Helicoverpa armigera), with EC50 values ranging from 0.36 to 4.60 mu g/cm(2). In particular, (2R*,3R*,4S*,5R*,7S*,8S*,9S*,l3S*,14S*,15R*)-2,5,9,14-tetraacetoxy-3-benzoyloxy-8,15-dihydroxy-7- isobutyroyloxyjatropha-6(17),11E-diene and (2R*,3R*, 4S*,5R*,7S*,8S*,9S*,l3S*,14S*,15R*)-2,5,14triacetoxy-3-benzoyloxy-8,15-dihydroxy-7-isobutyroyloxy-9-nicotinoyloxyjatropha-6(17),11E-diene had EC50 values of 0.36 and 0.43 mu g/cm(2), respectively, which were approximately 7-fold more potent than commercial neem oil (EC50 = 2.62 mu g/cm(2)). In addition, the major peplusol showed obvious antifungal activity against three strains of agricultural phytopathogenic fungi, Rhizoctonia solani, Colletotrichum litchi and Fusarium oxysporum f. sp. niveum. The results indicated that terpenoids in the latex of E. peplus are rich and highly diversified, and might function as constitutive defense metabolites against insect herbivores and pathogens for the plant. (C) 2016 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available