4.6 Article

Dynamics of entanglement and transport in one-dimensional systems with quenched randomness

Journal

PHYSICAL REVIEW B
Volume 98, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.98.035118

Keywords

-

Funding

  1. Gordon and Betty Moore Foundation under the EPiQS initiative [GBMF4303]
  2. EPSRC [EP/N028678/1]
  3. EPSRC [EP/N028678/1] Funding Source: UKRI

Ask authors/readers for more resources

Quenched randomness can have a dramatic effect on the dynamics of isolated 1D quantum many-body systems, even for systems that thermalize. This is because transport, entanglement, and operator spreading can be hindered by Griffiths rare regions, which locally resemble the many-body-localized phase and thus act as weak links We propose coarse-grained models for entanglement growth and for the spreading of quantum operators in the presence of such weak links. We also examine entanglement growth across a single weak link numerically. We show that these weak links have a stronger effect on entanglement growth than previously assumed: entanglement growth is subballistic whenever such weak links have a power-law probability distribution at low couplings, i.e., throughout the entire thermal Griffiths phase. We argue that the probability distribution of the entanglement entropy across a cut can be understood from a simple picture in terms of a classical surface growth model. We also discuss spreading of operators and conserved quantities. Surprisingly, the four length scales associated with (i) production of entanglement, (ii) spreading of conserved quantities, (iii) spreading of operators, and (iv) the width of the front of a spreading operator, are characterized by dynamical exponents that in general are all distinct. Our numerical analysis of entanglement growth between weakly coupled systems may be of independent interest.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available