4.8 Article

Low-Temperature, Solution-Processed ZrO2:B Thin Film: A Bifunctional Inorganic/Organic Interfacial Glue for Flexible Thin-Film Transistors

Journal

ACS APPLIED MATERIALS & INTERFACES
Volume 7, Issue 8, Pages 4494-4503

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsami.5b00036

Keywords

bifunctional inorganic/organic interfacial glue; flexible electronics; solution processing; thin-film transistor; boron-doped peroxo-zirconium oxide

Funding

  1. National Research Foundation of Korea [NRF-2010-0029207]
  2. Creative Allied Program - Korea Ministry of Science, ICT & Future Planning (MSIP) [ACP-12-1]
  3. LG Display

Ask authors/readers for more resources

A solution-processed boron-doped peroxo-zirconium oxide (ZrO2:B) thin film has been found to have multifunctional characteristics, providing both hydrophobic surface modification and a chemical glue layer. Specifically, a ZrO2:B thin film deposited on a hydrophobic layer becomes superhydrophilic following ultraviolet-ozone (UVO) treatment, whereas the same treatment has no effect on the hydrophobicity of the hydrophobic layer alone. Investigation of the ZrO2:B/hydrophobic interface layer using angle-resolved X-ray photoelectron spectroscopy (AR XPS) confirmed it to be chemically bonded like glue. Using the multifunctional nature of the ZrO2:B thin film, flexible amorphous indium oxide (In2O3) thin-film transistors (TFTs) were subsequently fabricated on a polyimide substrate along with a ZrO2:B/poly-4-vinylphenol (PVP) dielectric. An aqueous In2O3 solution was successfully coated onto the ZrO2:B/PVP dielectric, and the surface and chemical properties of the PVP and ZrO2:B thin films were analyzed by contact angle measurement, atomic force microscopy (AFM), Fourier transform infrared (FT-IR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The surface-engineered PVP dielectric was found to have a lower leakage current density (J(leak)) of 4.38 x 10(-8) A/cm(-2) at 1 MV/cm, with no breakdown behavior observed up to a bending radius of 5 mm. In contrast, the electrical characteristics of the flexible amorphous In2O3 TFT such as on/off current ratio (I-on/off) and electron mobility remained similar up to 10 mm of bending without degradation, with the device being nonactivated at a bending radius of 5 mm. These results suggest that ZrO2:B thin films could be used for low-temperature, solution-processed surface-modified flexible devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available