4.8 Article

Extraordinary Indentation Strain Stiffening Produces Superhard Tungsten Nitrides

Journal

PHYSICAL REVIEW LETTERS
Volume 119, Issue 11, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.119.115503

Keywords

-

Funding

  1. U.S. Department of Energy at University of Nevada, Las Vegas [DE-NA0001982]
  2. National Natural Science Foundation of China at Jilin University [11622432, 11474125]

Ask authors/readers for more resources

Transition-metal light-element compounds are a class of designer materials tailored to be a new generation of superhard solids, but indentation strain softening has hitherto limited their intrinsic load-invariant hardness to well below the 40 GPa threshold commonly set for superhard materials. Here we report findings from first-principles calculations that two tungsten nitrides, hP4-WN and hP6-WN2, exhibit extraordinary strain stiffening that produces remarkably enhanced indentation strengths exceeding 40 GPa, raising exciting prospects of realizing the long-sought nontraditional superhard solids. Calculations show that hP4-WN is metallic both at equilibrium and under indentation, marking it as the first known intrinsic superhard metal. An x-ray diffraction pattern analysis indicates the presence of hP4-WN in a recently synthesized specimen. We elucidate the intricate bonding and stress response mechanisms for the identified structural strengthening, and the insights may help advance rational design and discovery of additional novel superhard materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available