4.8 Article

Roughness-Facilitated Local 1/2 Scaling Does Not Imply the Onset of the Ultimate Regime of Thermal Convection

Journal

PHYSICAL REVIEW LETTERS
Volume 119, Issue 15, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.119.154501

Keywords

-

Funding

  1. FOM, Netherlands Organisation for Scientific Research (NWO)
  2. MCEC, Netherlands Organisation for Scientific Research (NWO
  3. Italian supercomputer Marconi-CINECA through the PRACE Project [2016143351]
  4. ARCHER UK National Supercomputing Service through the DECI Project [13DECI0246]

Ask authors/readers for more resources

In thermal convection, roughness is often used as a means to enhance heat transport, expressed in Nusselt number. Yet there is no consensus on whether the Nusselt vs Rayleigh number scaling exponent (Nu similar to Ra-beta) increases or remains unchanged. Here we numerically investigate turbulent Rayleigh-Benard convection over rough plates in two dimensions, up to Ra approximate to 10(12). Varying the height and wavelength of the roughness elements with over 200 combinations, we reveal the existence of two universal regimes. In the first regime, the local effective scaling exponent can reach up to 1/2. However, this cannot be explained as the attainment of the so-called ultimate regime as suggested in previous studies, because a further increase in Ra leads to the second regime, in which the scaling saturates back to a value close to the smooth wall case. Counterintuitively, the transition fromthe first to the second regime corresponds to the competition between bulk and boundary layer flow: from the bulk-dominated regime back to the classical boundary-layer-controlled regime. Our study demonstrates that the local 1/2 scaling does not necessarily signal the onset of ultimate turbulence.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available