4.8 Article

Dynamical and Reversible Control of Topological Spin Textures

Journal

PHYSICAL REVIEW LETTERS
Volume 118, Issue 15, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.118.157201

Keywords

-

Funding

  1. NWO via Spinoza Prize
  2. ERC Advanced Grant [338957 FEMTO/NANO]
  3. Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)

Ask authors/readers for more resources

Recent observations of topological spin textures brought spintronics one step closer to new magnetic memories. Nevertheless, the existence of Skyrmions, as well as their stabilization, require very specific intrinsic magnetic properties which are usually fixed in magnets. Here we address the possibility to dynamically control their intrinsic magnetic interactions by varying the strength of a high-frequency laser field. It is shown that drastic changes can be induced in the antiferromagnetic exchange interactions and the latter can even be reversed to become ferromagnetic, provided the direct exchange is already non-negligible in equilibrium as predicted, for example, in Si doped with C, Sn, or Pb adatoms. In the presence of Dzyaloshinskii-Moriya interactions, this enables us to tune features of ferromagnetic Skyrmions such as their radius, making them easier to stabilize. Alternatively, such topological spin textures can occur in frustrated triangular lattices. Then, we demonstrate that a high-frequency laser field can induce dynamical frustration in antiferromagnets, where the degree of frustration can subsequently be tuned suitably to drive the material toward a Skyrmionic phase.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available