3.8 Review

The Effect of Quorum-Sensing and Efflux Pumps Interactions in Pseudomonas aeruginosa Against Photooxidative Stress

Journal

JOURNAL OF LASERS IN MEDICAL SCIENCES
Volume 9, Issue 3, Pages 161-167

Publisher

SHAHID BEHESHTI UNIV MEDICAL SCIENCES, FAC MEDICINE
DOI: 10.15171/jlms.2018.30

Keywords

Antimicrobial photodynamic therapy; Pseudomonas aeruginosa; Quorum sensing

Ask authors/readers for more resources

Resistant infections essentially cause mortality in a burn unit. Several bacteria contribute to burn infections; among these, Pseudomonas aeruginosa majorly contributes to these infections revealing significant drug resistance. Similar to other bacteria, P. aeruginosa reveals various mechanisms to attain highest pathogenicity and resistance; among these, efflux pumps and quorum sensing are crucial. Quorum sensing enables effective communication between bacteria and synchronizes their gene expression resulting in optimum effect of the secreted proteins; alternatively, efflux pumps increase the bacterial resistance by pumping out the antimicrobial factors as well as the QS signals and precursors. Of recent, increasing episodes of drug resistance led to new findings and approaches for killing pathogenic bacteria without inducing the drug-resistant species. Photodynamic therapy (PDT), considered as an adjuvant and innovative method for conventional antibiotic therapy, is a photochemical reaction that includes visible light, oxygen, and a photosensitizer (PS). In this therapy, after exposure to visible light, the PS generates reactive oxygen species (ROS) that are bacteriostatic or bactericidal. Furthermore, this oxidative stress can disrupt the coordination of gene expression and alter the bacterial behavior. Considering the fact that the adaption and several gene expression patterns of microorganisms within the biofilm make them notably resistant to the recent antimicrobial treatments, this study aimed to emphasize the relationship between the efflux pump and QS under oxidative stress and their role in P. aeruginosa's reaction to PDT.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available