4.8 Article

Giant Kovacs-Like Memory Effect for Active Particles

Journal

PHYSICAL REVIEW LETTERS
Volume 119, Issue 18, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.119.188001

Keywords

-

Ask authors/readers for more resources

Dynamical properties of self-propelled particles obeying a bounded confidence rule are investigated by means of kinetic theory and agent-based simulations. While memory effects are observed in disordered systems, we show that they also occur in active matter systems. In particular, we find that the system exhibits a giant Kovacs-like memory effect that is much larger than predicted by a generic linear theory. Based on a separation of time scales we develop a nonlinear theory to explain this effect. We apply this theory to driven granular gases and propose further applications to spin glasses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available