4.8 Review

Accelerating Materials Development via Automation, Machine Learning, and High-Performance Computing

Journal

JOULE
Volume 2, Issue 8, Pages 1410-1420

Publisher

CELL PRESS
DOI: 10.1016/j.joule.2018.05.009

Keywords

-

Funding

  1. U.S. Department of Energy, Office of Science [DE-AC02-06CH11357]

Ask authors/readers for more resources

Successful materials innovations can transform society. However, materials research often involves long timelines and low success probabilities, dissuading investors who have expectations of shorter times from bench to business. A combination of emergent technologies could accelerate the pace of novel materials development by ten times or more, aligning the timelines of stakeholders (investors and researchers), markets, and the environment, while increasing return on investment. First, tool automation enables rapid experimental testing of candidate materials. Second, high-performance computing concentrates experimental bandwidth on promising compounds by predicting and inferring bulk, interface, and defect-related properties. Third, machine learning connects the former two, where experimental outputs automatically refine theory and help define next experiments. We describe state-of-the-art attempts to realize this vision and identify resource gaps. We posit that over the coming decade, this combination of tools will transform the way we perform materials research, with considerable first-mover advantages at stake.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available