4.6 Article

Controlling the atomic distribution in PtPd nanoparticles: thermal stability and reactivity during NO abatement

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 19, Issue 15, Pages 9974-9982

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c7cp00602k

Keywords

-

Funding

  1. CAPES
  2. CNPq

Ask authors/readers for more resources

In situ X-ray absorption spectroscopy and mass spectrometry measurements were employed to simultaneously probe the atom specific short range order and reactivity of Pd and PtPd nanoparticles towards NO decomposition at 300 degrees C. The nanoparticles were synthesized by a well controlled, eco-friendly wet chemical reduction of metal salts and later supported on activated carbon. Particularly for the bimetallic PtPd samples, distinct atomic arrangements were achieved using a seeding growth method, which allowed producing a random nanoalloy, or nanoparticles with Pt-or Pd-rich core. X-ray photoelectron spectroscopy, transmission electron microscopy, and X-ray diffraction provided additional insights on their electronic, morphological and long range order structural properties. The results revealed that the higher the thermal induced atomic migration observed within the nanoparticles during thermal treatments, the least were their reactivity for NO abatement.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available