4.5 Article

NO2 and HCHO measurements in Korea from 2012 to 2016 from Pandora spectrometer instruments compared with OMI retrievals and with aircraft measurements during the KORUS-AQ campaign

Journal

ATMOSPHERIC MEASUREMENT TECHNIQUES
Volume 11, Issue 8, Pages 4583-4603

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/amt-11-4583-2018

Keywords

-

Funding

  1. Pandora project
  2. KORUS-AQ project [NNH15ZDA001N-KORUS]
  3. Korea Ministry of Environment as Public Technology Program based on Environmental Policy [2017000160001]

Ask authors/readers for more resources

Nine Pandora spectrometer instruments (PSI) were installed at eight sites in South Korea as part of the KORUS-AQ (Korea U.S.-Air Quality) field study integrating information from ground, aircraft, and satellite measurements for validation of remote sensing air-quality studies. The PSI made direct-sun measurements of total vertical column NO2, C(NO2), with high precision (0.05 DU, where 1 DU = 2.69 x 10(16) molecules cm(-2)) and accuracy (0.1 DU) that were retrieved using spectral fitting techniques. Retrieval of formaldehyde C(HCHO) total column amounts were also obtained at five sites using the recently improved PSI optics. The C(HCHO) retrievals have high precision, but possibly lower accuracy than for NO2 because of uncertainty about the optimum spectral window for all ground-based and satellite instruments. PSI direct-sun retrieved values for C(NO2) and C(HCHO) are always significantly larger than OMI (AURA satellite Ozone Monitoring Instrument) retrieved C(NO2) and C(HCHO) for the OMI overpass local times (KST = 13.5 +/- 0.5 h). In urban areas, PSI C(NO2) 30day running averages are at least a factor of two larger than OMI averages Similar differences are seen for C(HCHO) in Seoul and nearby surrounding areas. Late afternoon values of C(HCHO) measured by PSI are even larger, implying that OMI early afternoon measurements underestimate the effect of poor air quality on human health. The primary cause of OMI underestimates is the large OMI field of view (FOV) that includes regions containing low values of pollutants. In relatively clean areas, PSI and OMI are more closely in agreement. C(HCHO) amounts were obtained for five sites, Yonsei University in Seoul, Olympic Park, Taehwa Mountain, Amnyeondo, and Yeoju. Of these, the largest amounts of C(HCHO) were observed at Olympic Park and Taehwa Mountain, surrounded by significant amounts of vegetation. Comparisons of PSI C(HCHO) results were made with the Compact Atmospheric Multispecies Spectrometer CAMS during overflights on the DC-8 aircraft for Taehwa Mountain and Olympic Park. In all cases, PSI measured substantially more C(HCHO) than obtained from integrating the CAMS altitude profiles. PSI C(HCHO) at Yonsei University in Seoul frequently reached 0.6 DU and occasionally exceeded 1.5 DU. The semi-rural site, Taehwa Mountain, frequently reached 0.9 DU and occasionally exceeded 1.5 DU. Even at the cleanest site, Amnyeondo, C(HCHO) occasionally exceeded 1 DU.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available