4.5 Article

Dopant-Free Twinning Superlattice Formation in InSb and InP Nanowires

Journal

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/pssr.201700310

Keywords

InP; InSb; nanowires; twinning superlattice

Funding

  1. Australian Research Council (ARC)
  2. National Natural Science Foundation of China [51702368]

Ask authors/readers for more resources

Periodic arrangement of twin planes creates a controllable polytype that can affect both the electronic and optical properties of nanowires. The approach that is most used for inducing twinning superlattice (TSL) formation in III-V nanowires is introducing impurity dopants during growth. Here, we demonstrate that controlling the growth parameters is sufficient to produce regular twinning planes in Au-catalysed InSb and InP nanowires. Our results show that TSL formation in InSb nanowires only exists in a very narrow growth window. We suggest that growth conditions induce a high concentration of In (or Sb) in the Au droplet, which plays a similar role to that of surfactant impurities such as Zn, and increases the droplet wetting angle to yield a geometry that is favorable for TSL formation. The demonstration of TSL structure in InSb and InP nanowires by controlling the input of In (or Sb) further enhances fundamental understanding of TSL formation in III-V nanowires and allows us to tune the properties of these nanowires by crystal phase engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available