4.7 Article

Overcoming the quantum efficiency-lifetime tradeoff of photocathodes by coating with atomically thin two-dimensional nanomaterials

Journal

NPJ 2D MATERIALS AND APPLICATIONS
Volume 2, Issue -, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/s41699-018-0062-6

Keywords

-

Funding

  1. Laboratory Directed Research and Development program of Los Alamos National Laboratory (LANL) [20150394DR]
  2. National Nuclear Security Administration of U.S. Department of Energy [DE-AC52-06NA25396]

Ask authors/readers for more resources

Photocathodes are key components of electron injectors for X-ray free electron laser and X-ray energy recovery linacs, which generate brilliant, ultrafast, and coherent X-rays for the exploration of matter with ultrahigh resolutions in both space and time. Whereas alkali-based semiconducting photocathodes display a higher quantum efficiency (QE) in the visible light spectrum than their metallic counterparts, their lifetimes are much shorter due to the high reactivity of alkali-based surfaces to the residual gases in the vacuum chamber. Overcoming the tradeoff between QE and lifetimes has been a great challenge in the accelerator community. Herein, based on ab initio density functional calculations, we propose an approach to overcome this tradeoff by coating with atomically thin two-dimensional (2D) nanomaterials. On one hand, the 2D coating layers can enhance the lifetimes of photocathodes by preventing the chemical reactions with the residual gases. On the other hand, the 2D coating layers can effectively engineer the work function of photocathodes, thus controlling their QE. A monolayer of insulating BN reduces the work function, whereas a monolayer of semi-metallic graphene or semiconducting molybdenum disulfide (MoS2) increases the work function. This phenomenon originates from the induced interfacial dipoles. The reduction of work function by BN implies that it is capable of maintaining the high QE of semiconducting photocathodes in addition to enhance their lifetimes. This study advances our understandings on the surface chemistry of coated photocathodes and opens new technological avenues to fabricate photocathodes with high QE and longer lifetimes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available