4.6 Article

Nuclear structure features of very heavy and superheavy nuclei-tracing quantum mechanics towards the 'island of stability'

Journal

PHYSICA SCRIPTA
Volume 92, Issue 8, Pages 1-83

Publisher

IOP Publishing Ltd
DOI: 10.1088/1402-4896/aa7921

Keywords

nuclear structure; superheavy nuclei; decay spectroscopy; in-beam spectroscopy; K-isomers; nuclear deformation

Funding

  1. European Commission in the framework of the CEA-EURO-TALENT program

Ask authors/readers for more resources

The quantum-mechanic nature of nuclear matter is at the origin of the vision of a region of enhanced stability at the upper right end of the chart of nuclei, the so-called 'island of stability'. Since the 1960s in the early second half of the last century, various models predict closed shells for proton numbers 114-126 and neutron numbers such as 172 or 184. Being stabilized by quantum-mechanic effects only, those extremely heavy man-made nuclear species are an ideal laboratory to study the origin of the strong nuclear interaction which is the driving force for matter properties in many fields ranging from microscopic scales like hadronic systems to cosmic scales in stellar environments like neutron stars. Since the 1950s, experiments on the synthesis of new elements and isotopes have also revealed various exciting nuclear structure features. The contribution of Bohr, Mottelson and Rainwater with, in particular, the development of the unified model played an essential role in this context. Although not anticipated in the region of the heaviest nuclei, many phenomena were subsequently discovered like the interplay of collective features manifesting themselves e.g. in nuclear deformation, ranging from spherical to prolate and oblate shapes with the possible occurrence of triaxial symmetries, and single particle states and their excitation into quasiparticle configurations. The continuous development of modern experimental techniques employing advanced detection set-ups was essential to reveal these exciting nuclear structure aspects in the actinide and transactinide regions since the production cross-section becomes extremely small with increasing mass and charge. Further technological progress, in particular, high intensity stable ion beam accelerator facilities presently under construction, as well as potentially in the farther future radioactive neutron rich ion beams provide a high discovery potential for the basic understanding of nuclear matter.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available