4.5 Article

Application of C30B15N15 heterofullerene in the isoniazid drug delivery: DFT studies

Journal

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.physe.2017.02.009

Keywords

C30B15/sT(15) heterofullerene; Isoniazid; Drug delivery; DFT

Ask authors/readers for more resources

Using density functional theory, we have investigated the potential application of a C30B15N15 heterofullerene in anti-cancer isoniazid drug delivery. It was found that isoniazid prefers to attach via its -NH2 group to a boron atom of the C30B15N15 with releasing a large energy of about 21.91 kcal/mol. Our partial density of states analysis demonstrates that the boron atoms significantly contribute in generation of virtual orbitals of C30B15N15 fullerene, indicating that these atoms will be suitable for nucleophilic attack rather than carbon atoms. In addition to the large released energy, the electronic properties C30B15N15 are significantly sensitive to the isoniazid attachment which can recognize the drug trajectory by affecting the fluorescence emission properties. Unlike, different nanostructures whose structures need to be manipulated to be suitable for drug delivery, the C30B15N15 fullerene can be used in the pristine form. We proposed a drug release mechanism in cancer tissues, representing that in the low pH of the cancer cells the drug and C30B15N15 fullerene are considerably protonated, thereby separating the drug from the surface of the fullerene. The reaction mechanism of the drug with the fullerene is changed from covalence in natural environment to hydrogen bonding in acidic cancer cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available