4.3 Article

Induction of water deficit tolerance in wheat due to exogenous application of plant growth regulators: membrane stability, water relations and photosynthesis

Journal

PHOTOSYNTHETICA
Volume 56, Issue 2, Pages 478-486

Publisher

ACAD SCIENCES CZECH REPUBLIC, INST EXPERIMENTAL BOTANY
DOI: 10.1007/s11099-017-0695-2

Keywords

chlorophyll fluorescence; drought; gas exchange; senescence; yield

Categories

Funding

  1. ICAR
  2. CSIR

Ask authors/readers for more resources

Our experiment was carried out in order to explore effects of plant growth regulators (PGR; thidiazuron, paclobutrazol, and ascorbic acid) on physiological traits of wheat genotypes under water surplus and deficit conditions. Study revealed that relative water content, membrane stability index, chlorophyll content, photosynthetic rate (P-N), and maximal quantum yield of PSII improved with PGRs application across the genotypes both under irrigation and water stress. The response of HD 2733 genotype was more positive toward PGRs treatment as compared to other genotypes under water stress. Higher P-N and chlorophyll contents were observed in HD 2987 followed by C 306 genotype under water-stress conditions. Moreover, Rubisco small subunit (SSU) expression was lower in wheat genotypes under water stress as compared to irrigated conditions. Application of PGRs led to upregulation of SSU under water stress, while no significant change was found in Rubisco level and activity under irrigated condition in dependence on PGRs treatments. Yield-related traits showed also significant reduction under water-stress conditions, while application of PGRs enhanced the yield and its components. Results indicated that the PGRs exhibited a positive interaction and synergetic effect on water stressed wheat plants in terms of photosynthetic machinery and yield.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available