4.4 Article

Common Structural Elements in the Chromophore Binding Pocket of the Pfr State of Bathy Phytochromes

Journal

PHOTOCHEMISTRY AND PHOTOBIOLOGY
Volume 93, Issue 3, Pages 724-732

Publisher

WILEY
DOI: 10.1111/php.12742

Keywords

-

Funding

  1. Stifterverband fur die Deutsche Wissenschaft
  2. Deutsche Forschungsgemeinschaft [SFB1078]

Ask authors/readers for more resources

Phytochromes are bimodal photoreceptors which, upon light absorption by the tetrapyrrole chromophore, can be converted between a red-absorbing state (Pr) and far-red-absorbing state (Pfr). In bacterial phytochromes, either Pr or Pfr are the thermally stable states, thereby constituting the classes of prototypical and bathy phytochromes, respectively. In this work, we have employed vibrational spectroscopies to elucidate the origin of the thermal stability of the Pfr states in bathy phytochromes. Here, we present the first detailed spectroscopic analysis of RpBphP6 (Rhodopseudomas palustris), which together with results obtained for Agp2 (Agrobacterium tumefaciens) and PaBphP (Pseudomonas aeruginosa) allows identifying common structural properties of the Pfr state of bathy phytochromes, which are (1) a homogenous chromophore structure, (2) the protonated ring C propionic side chain of the chromophore and (3) a retarded H/D exchange at the ring D nitrogen. These properties are related to the unique strength of the hydrogen bonding interactions between the ring D N-H group with the side chain of the conserved Asp194 (PaBphP numbering). As revealed by a comparative analysis of homology models and available crystal structures of Pfr states, these interactions are strengthened by an Arg residue (Arg453) only in bathy but not in prototypical phytochromes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available