4.5 Review

Bioinspired Bouligand cellulose nanocrystal composites: a review of mechanical properties

Publisher

ROYAL SOC
DOI: 10.1098/rsta.2017.0050

Keywords

cellulose nanocrystals; Bouligand; extrinsic toughening; self-assembly; chiral nematic; nanocomposites

Funding

  1. Air Force Office of Scientific Research [F1ATA00236G002]

Ask authors/readers for more resources

The twisted plywood, or Bouligand, structure is the most commonly observed microstructural motif in natural materials that possess high mechanical strength and toughness, such as that found in bone and the mantis shrimp dactyl club. These materials are isotropically toughened by a low volume fraction of soft, energy-dissipating polymer and by the Bouligand structure itself, through shear wave filtering and crack twisting, deflection and arrest. Cellulose nanocrystals (CNCs) are excellent candidates for the bottom-up fabrication of these structures, as they naturally self-assemble into 'chiral nematic' films when cast from solutions and possess outstanding mechanical properties. In this article, we present a review of the fabrication techniques and the corresponding mechanical properties of Bouligand biomimetic CNC nanocomposites, while drawing comparison to the performance standards set by tough natural composite materials. This article is part of a discussion meeting issue 'New horizons for cellulose nanotechnology'.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available