4.7 Article

Bimodal Patterning Discrimination in Harnessed Honey Bees

Journal

FRONTIERS IN PSYCHOLOGY
Volume 9, Issue -, Pages -

Publisher

FRONTIERS MEDIA SA
DOI: 10.3389/fpsyg.2018.01529

Keywords

classical conditioning; bimodal learning; negative patterning; positive patterning; inter-trial interval; insect; honey bee

Funding

  1. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico [CNPq: 457718/2014-5]
  2. Fundacao de Amparo a Pesquisa do Estado de Minas Gerais [FAPEMIG: APQ-02013-13]
  3. Program Young Talent of Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES/Science without Borders - Brazilian Government)

Ask authors/readers for more resources

In natural environments, stimuli and events learned by animals usually occur in a combination of more than one sensory modality. An important problem in experimental psychology has been thus to understand how organisms learn about multimodal compounds and how they discriminate this compounds from their unimodal constituents. Here we tested the ability of honey bees to learn bimodal patterning discriminations in which a visual-olfactory compound (AB) should be differentiated from its visual (A) and olfactory (B) elements. We found that harnessed bees trained in classical conditioning of the proboscis extension reflex (PER) are able to solve bimodal positive and negative patterning (NP) tasks. In positive patterning (PP), bees learned to respond significantly more to a bimodal reinforced compound (AB C) than to non-reinforced presentations of single visual (A) or olfactory (B) elements. In NP, bees learned to suppress their responses to a non-reinforced compound (AB) and increase their responses to reinforced presentations of visual (A C) or olfactory (B C) elements alone. We compared the effect of two different inter-trial intervals (ITI) in our conditioning approaches. Whereas an ITI of 8 min allowed solving both PP and NP, only PP could be solved with a shorter ITI of 3 min. In all successful cases of bimodal PP and NP, bees were still able to discriminate between reinforced and non-reinforced stimuli in memory tests performed one hour after conditioning. The analysis of individual performances in PP and NP revealed that different learning strategies emerged in distinct individuals. Both in PP and NP, high levels of generalization were found between elements and compound at the individual level, suggesting a similar difficulty for bees to solve these bimodal patterning tasks. We discuss our results in light of elemental and configural learning theories that may support the strategies adopted by honey bees to solve bimodal PP or NP discriminations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available