4.7 Article

Thermoeconomic comparison between pure and mixture working fluids of organic Rankine cycles (ORCs) for low temperature waste heat recovery

Journal

ENERGY CONVERSION AND MANAGEMENT
Volume 106, Issue -, Pages 859-872

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2015.09.042

Keywords

Organic Rankine cycle (ORC); Thermoeconomic multi-objective optimization; Exergy efficiency; Levelized energy cost (LEC); Mixture working fluids

Funding

  1. China Scholarship Council (CSC)

Ask authors/readers for more resources

Based on the thermoeconomic multi-objective optimization, simultaneously considering exergy efficiency and levelized energy cost (LEC), the thermoeconomic comparisons between pure and mixture working fluids of organic Rankine cycles (ORCs) have been investigated. Four models are proposed based on the different location of evaporating bubble point temperature or condensing dew point temperature for mixture working fluids. The effects of mass fraction and four key parameters (evaporator temperature, condenser temperature, pinch point temperature difference and degree of superheat) on exergy efficiency and levelized energy cost (LEC) are examined. Pareto-optimal solutions of four models using 0.7R245fa/0.3R227ea are obtained and compared. Taking mass fraction into account, the thermoeconomic comparisons between pure and mixture working fluids have been studied. Research demonstrates that the mixtures don't always present better thermodynamic performance and economic performance than pure working fluids. Model 2 (T-7 = T-E, T-3 = T-C) is the favorable operation condition for its highest thermodynamic performance and relatively low economic factor. Taking mass fraction as decision variable, Pareto-optimal solutions for models 1, 2,3 and 4 in pairs of (exergy efficiency (%), LEC ($/kW h)) are (56.71, 0.188), (57.67, 0.192), (57.11, 0.194), and (56.91, 0.192), respectively. Compared with pure working fluids, the mixture working fluids present better exergy efficiency but worse LEC except model 1. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available