4.7 Article

Thermodynamic analysis of an integrated energy system based on compressed air energy storage (CAES) system and Kalina cycle

Journal

ENERGY CONVERSION AND MANAGEMENT
Volume 98, Issue -, Pages 161-172

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.enconman.2015.03.094

Keywords

Compressed air energy storage; Kalina cycle; Energy analysis; Exergy analysis; Integrated energy system

Funding

  1. National Natural Science Foundation of China [51406153]

Ask authors/readers for more resources

High penetration of renewable power sources into power system leads to significant challenge in balancing of power generation and consumption due to the highly erratic nature of renewable energies. Integrating the energy storage system (ESS) with power system can weaken these negative effects effectively. Compressed air energy storage (CAES) system as one of the grid-scale ESS technologies has grown rapidly in the past few years. However, the temperature of exhaust from low pressure turbine during discharge process is still high enough to utilize. An integrated energy system consisting of a CAES system and a Kalina cycle system 6 (KCS6) is proposed to recover this waste heat. The thermodynamic analyses including energy analysis and exergy analysis are evaluated by using steady-state mathematical model and thermodynamic laws. The second law efficiency of the proposed CAES-KCS6 system can be improved nearly 4% compared to that of the single conventional CAES system. Meanwhile, the parametric analysis is also carried out to evaluate the effects of some key parameters on system performance, such as the turbine inlet temperature (TIT), inlet pressure of low pressure turbine and the air storage cavern temperature. Results show that all of these parameters have positive effect on system exergy efficiency. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available