4.7 Article

Characterization of glutathione S-transferases in the detoxification of metolachlor in two maize cultivars of differing herbicide tolerance

Journal

PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY
Volume 143, Issue -, Pages 265-271

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.pestbp.2016.12.003

Keywords

Herbicide tolerance; Glutathione S-transferases; Metolachlor

Funding

  1. Chinese Universities Scientific Fund [2014XJ014]
  2. National Key Research and Development Program [2016YFD0300303]

Ask authors/readers for more resources

Glutathione S-transferases (GSTs) have been widely studied in relation to their role in herbicide tolerance and detoxification. However, a detailed characterization of GSTs from herbicide tolerant and sensitive maize cultivars is still lacking. In this study, we determined the mechanism of differential tolerance between two maize cultivars which had 4-fold difference tolerance to metolachlor. The metabolism rate of metolachlor was more rapid in the tolerant cultivar (Zea mays L. cv Nongda86) than the susceptible one (Zea mays L cv Zhengda958). Addition of the GST inhibitor ethacrynic acid reduced the metabolism of metolachlor indicating the involvement of GSTs in the differential detoxification of metolachlor. The expression profiles of 32 GST isozymes were measured using quantitative RT-PCR. The results showed the expression of GST genes were slightly up-regulated in Nongda86, but severely inhibited in Zhengdan958 24 h after metolachlor treatment. The genes GSTI, GSTIII, GSTIV, GST5, GST6 and GST7, which can detoxify chloroacetanilide herbicides, were all expressed higher in Nongda86 compared to Zhendgan958. The result of GST activity was consistent with the gene expression profiles. Collectively, higher level expression of GST genes, leading to higher GST activity and faster herbicide detoxification, appears to be responsible for the difference in tolerance to metolachlor in two maize cultivars. (C) 2016 Published by Elsevier Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available