4.7 Article

Structural characteristics of strongly coupled ions in a dense quantum plasma

Journal

PHYSICAL REVIEW E
Volume 98, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.98.023207

Keywords

-

Funding

  1. German Academic Exchange Service (DAAD)
  2. Deutsche Forschungsgemeinschaft [BO1366/10]
  3. Ministry of Education and Science of the Republic of Kazakhstan [BR05236730]

Ask authors/readers for more resources

The structural properties of strongly coupled ions in dense plasmas with moderately to strongly degenerate electrons are investigated in the framework of the one-component plasma model of ions interacting through a screened pair interaction potential. Special focus is put on the description of the electronic screening in the Singwi-Tosi-Land-Sjolander (STLS) approximation. Different cross-checks and analyses using ion potentials obtained from ground-state quantum Monte Carlo data, the random phase approximation (RPA), and existing analytical models are presented for the computation of the structural properties, such as the pair distribution and the static structure factor, of strongly coupled ions. The results are highly sensitive to the features of the screened pair interaction potential. This effect is particularly visible in the static structure factor. The applicability range of the screened potential computed from STLS is identified in terms of density and temperature of the electrons. It is demonstrated that at r(s) > 1, where r(s) is the ratio of the mean interelectronic distance to the Bohr radius, electronic correlations beyond RPA have a nonnegligible effect on the structural properties. Additionally, the applicability of the hypernetted chain approximation for the calculation of the structural properties using the screened pair interaction potential is analyzed employing the effective coupling parameter approach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available