4.8 Article

Recyclable magnetite-silver heterodimer nanocomposites with durable antibacterial performance

Journal

BIOACTIVE MATERIALS
Volume 3, Issue 1, Pages 80-86

Publisher

KEAI PUBLISHING LTD
DOI: 10.1016/j.bioactmat.2017.05.008

Keywords

Heterodimeric nanostructure; Antibacterial; Chitosan coating; Silver nanoparticle; Recyclable

Funding

  1. National Natural Science Foundation of China [81460107]

Ask authors/readers for more resources

There is a significant need for magnetite-silver nanocomposites that exhibit durable and recyclable antimicrobial activity. In this study, magnetic iron oxide nanoparticles (Fe3O4 NPs) coated with ethylenediamine-modified chitosan/polyacrylic acid copolymeric layer (Fe3O4@ECS/PAA) were fabricated. Subsequently, directly deposited silver (Ag) NPs procedure was carried out to form the antibacterial heterodimers of Fe3O4@ECS/PAA-Ag NPs. The composition and morphology of the resultant nanostructures were confirmed by FT-IR, XRD, TEM and TGA. The overall length of the heterodimers was approximately 45 nm, in which the mean diameter of Fe3O4@ECS/PAA NPs reached up to 35 nm, and that of Ag NPs was around 15 nm. The mass fraction of silver NPs in the nanocomposites was about 63.1%. The obtained Fe3O4@ECS/PAA NPs exhibited good colloidal stability, and excellent response to additional magnetic field, making the NPs easy to recover after antibacterial tests. In particular, the Fe3O4@ECS/PAA-Ag NPs retained nearly 100% biocidal efficiency (10(6)-10(7) CFU/mg nanoparticles) for both Gram-negative bacteria E. coli and Gram-positive bacteria S. aureus throughout ten cycles without washing with any solvents or water, exhibiting potent and durable antibacterial activity. (c) 2017 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available