4.1 Article

Comparison of 3D Echocardiogram-Derived 3D Printed Valve Models to Molded Models for Simulated Repair of Pediatric Atrioventricular Valves

Journal

PEDIATRIC CARDIOLOGY
Volume 39, Issue 3, Pages 538-547

Publisher

SPRINGER
DOI: 10.1007/s00246-017-1785-4

Keywords

3D printing; Surgical simulation; Valve repair; 3D echocardiography

Funding

  1. Department of Anesthesia and Critical Care at The Children's Hospital of Philadelphia
  2. National Institute of Biomedical Imaging and Bioengineering (NIBIB) [P41 EB015902]
  3. Cancer Care Ontario
  4. Ontario Ministry of Health and Long-Term Care
  5. Natural Sciences and Engineering Research Council of Canada

Ask authors/readers for more resources

Mastering the technical skills required to perform pediatric cardiac valve surgery is challenging in part due to limited opportunity for practice. Transformation of 3D echocardiographic (echo) images of congenitally abnormal heart valves to realistic physical models could allow patient-specific simulation of surgical valve repair. We compared materials, processes, and costs for 3D printing and molding of patient-specific models for visualization and surgical simulation of congenitally abnormal heart valves. Pediatric atrioventricular valves (mitral, tricuspid, and common atrioventricular valve) were modeled from transthoracic 3D echo images using semi-automated methods implemented as custom modules in 3D Slicer. Valve models were then both 3D printed in soft materials and molded in silicone using 3D printed negative molds. Using pre-defined assessment criteria, valve models were evaluated by congenital cardiac surgeons to determine suitability for simulation. Surgeon assessment indicated that the molded valves had superior material properties for the purposes of simulation compared to directly printed valves (p < 0.01). Patient-specific, 3D echo-derived molded valves are a step toward realistic simulation of complex valve repairs but require more time and labor to create than directly printed models. Patient-specific simulation of valve repair in children using such models may be useful for surgical training and simulation of complex congenital cases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available