4.7 Article

Robust-learning fuzzy c-means clustering algorithm with unknown number of clusters

Journal

PATTERN RECOGNITION
Volume 71, Issue -, Pages 45-59

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.patcog.2017.05.017

Keywords

Fuzzy clustering; Fuzzy c-means (FCM); Robust learning-based schema; Number of clusters; Entropy penalty terms; Robust-learning FCM (RL-FCM)

Funding

  1. Ministry of Science and Technology, Taiwan [MOST 105-2118-M-033-004-MY2]

Ask authors/readers for more resources

In fuzzy clustering, the fuzzy c-means (FCM) algorithm is the most commonly used clustering method. Various extensions of FCM had been proposed in the literature. However, the FCM algorithm and its extensions are usually affected by initializations and parameter selection with a number of clusters to be given a priori. Although there were some works to solve these problems in FCM, there is no work for FCM to be simultaneously robust to initializations and parameter selection under free of the fuzziness index without a given number of clusters. In this paper, we construct a robust learning-based FCM framework, called a robust-learning FCM (RL-FCM) algorithm, so that it becomes free of the fuzziness index m and initializations without parameter selection, and can also automatically find the best number of clusters. We first use entropy-type penalty terms for adjusting bias with free of the fuzziness index, and then create a robust learning-based schema for finding the best number of clusters. The computational complexity of the proposed RL-FCM algorithm is also analyzed. Comparisons between RL-FCM and other existing methods are made. Experimental results and comparisons actually demonstrate these good aspects of the proposed RL-FCM where it exhibits three robust characteristics: 1) robust to initializations with free of the fuzziness index, 2) robust to (without) parameter selection, and 3) robust to number of clusters (with unknown number of clusters). (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available