4.6 Article

Interface excitons at lateral heterojunctions in monolayer semiconductors

Journal

PHYSICAL REVIEW B
Volume 98, Issue 11, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.98.115427

Keywords

-

Funding

  1. Research Grant Council of Hong Kong [HKU705513P, C7036-17W]
  2. Croucher Foundation
  3. NSFC [11504241]

Ask authors/readers for more resources

We study the interface exciton at lateral type II heterojunctions of monolayer transition metal dichalcogenides (TMDs), where the electron and hole prefer to stay at complementary sides of the junction. We find that the 1D interface exciton has giant binding energy in the same order as 2D excitons in pristine monolayer TMDs although the effective radius (electron-hole separation) of interface exciton is much larger than that of 2D excitons. The binding energy, exciton radius, and optical dipole strongly depends on the band offset at the junction. The intervalley coupling induced by the electron-hole Coulomb exchange interaction and the quantum confinement effect at interfaces of a closed triangular shape are also investigated. Small triangles realize 0D quantum dot confinement of excitons, and we find a transition from nondegenerate ground state to degenerate ones when the size of the triangle varies. Our findings may facilitate the implementation of the optoelectronic devices based on the lateral heterojunction structures in monolayer semiconductors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available