4.3 Article

Oxygen Vacancies Enhancing Electrocatalysis Performance of Porous Copper Oxide

Journal

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/ppsc.201600420

Keywords

-

Funding

  1. Program for New Century Excellent Talents of the University in China [NCET-13-0645]
  2. National Natural Science Foundation of China [NSFC-21201010, 21671170, 21673203]
  3. Innovation Scientists and Technicians Troop Construction Projects of Henan Province [164200510018]
  4. Program for Innovative Research Team (in Science and Technology) in University of Henan Province [14IRTSTHN004]
  5. Six Talent Plan [2015-XCL-030]
  6. Qinglan Project

Ask authors/readers for more resources

Porous CuO particles with oxygen vacancies are first synthetized by a simple calcination of Cu2C2O4 particles. Oxygen vacancies are confirmed by high resolution transmission electron microscopy, electron paramagnetic resonance measurements, and X-ray photoelectron spectroscopy. When porous CuO particles with oxygen vacancies are as-assembled as nonenzymatic glucose sensors, they reveal high sensitivity and good anti-interference ability. The existing oxygen vacancies can help to increase the rate that electron reaches to the surface and accelerate the kinetics of the surface redox reactions to enhance the electrochemical performances of materials. In this work, the response time of porous CuO particles with oxygen vacancies' modified electrode for the electrocatalysis reaction is less than 3 s. Meanwhile, the calibration plot is linear over the wide concentration range of 0.5 x 10(-6)-6.32 x 10(-3) M and a detection limit of 50 x 10(-9) M. The developed sensor displays high sensitivity of 10 490.45 mu A mM(-1) cm(-2) and good anti-interference ability, which is prior than many previous noble metal-based and Cu-based electrocatalysts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available