4.6 Article

Simulation of quantum walks and fast mixing with classical processes

Journal

PHYSICAL REVIEW A
Volume 98, Issue 3, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.98.032115

Keywords

-

Ask authors/readers for more resources

We compare discrete-time quantum walks on graphs to their natural classical equivalents, which we argue are lifted Markov chains (LMCs), that is, classical Markov chains with added memory. We show that LMCs can simulate the mixing behavior of any quantum walk, under a commonly satisfied invariance condition. This allows us to answer an open question on how the graph topology ultimately bounds a quantum walk's mixing performance, and that of any stochastic local evolution. The results highlight that speedups in mixing and transport phenomena are not necessarily diagnostic of quantum effects, although superdiffusive spreading is more prominent with quantum walks. The general simulating LMC construction may lead to large memory, yet we show that for the main graphs under study (i.e., lattices) this memory can be brought down to the same size employed in the quantum walks proposed in the literature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available