4.7 Article

Hydropyrolysis of Lignin Using Pd/HZSM-5

Journal

ENERGY & FUELS
Volume 29, Issue 3, Pages 1793-1800

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ef502779s

Keywords

-

Funding

  1. Weyerhauser
  2. CAPES (Coordination for the Improvement of Higher Education Personnel) from Brazil

Ask authors/readers for more resources

The aim of this work was to study the formation of cycloalkanes from hydropyrolysis of lignin with HZSM-5 and Pd/HZSM-5 catalysts. Cycloalkanes are high-octane-rating molecules and are a major component of jet fuels. We observed that palladium supported on HZSM-5 catalyzed hydrogenation and deoxygenation reactions that converted phenolic compounds into aromatic hydrocarbons and cycloalkanes. This in situ study analyzed the effect of the catalyst-to-lignin ratio, H-2 partial pressure, and temperature on the yields of hydrocarbons with HZSM-5 and 1 wt % Pd/HZSM-5. Pd/HZSM-5 produced 44% more aromatic hydrocarbons than HZSM-5 at a catalyst-to-lignin ratio of 20:1, 650 degrees C, and a constant H-2 partial pressure of 1.7 MPa. The presence of palladium led to a significant difference in yields only at 1.7 MPa H2 partial pressure. In addition, the hydropyrolysis temperature played a substantial role in the equilibrium conversion of hydrogenation reactions that led to cycloalkanes directly from lignin. In an attempt to bypass the thermal limitations of the in situ process, we performed ex situ catalytic upgrading experiments and also observed formation of cycloalkanes at a hydropyrolysis temperature of 650 degrees C, packed bed temperature of 300 degrees C, and H-2 partial pressure of 1.7 MPa.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available