4.7 Article

Anisole and Guaiacol Hydrodeoxygenation Reaction Pathways over Selected Catalysts

Journal

ENERGY & FUELS
Volume 29, Issue 2, Pages 909-916

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ef502551p

Keywords

-

Funding

  1. National Renewable Energy Laboratory [DE-AC36-08GO28308]
  2. Department of Energy's Office of Energy Efficiency & Renewable Energy

Ask authors/readers for more resources

Optimizing catalysts and reaction conditions for transalkylation as well as hydrodeoxygenation reactions in a hydropyrolysis process while minimizing demethylation reactions may improve carbon yield and energy recovery in the liquid product. Pyrolysis vapor model compound hydrodeoxygenation reactions were investigated in a fixed bed reactor at 350450 degrees C, 1.715 bar (10200 psig), with 1460 mol % hydrogen in the feed gas mixture to determine reaction pathways under a range of reaction conditions. Anisole hydrodeoxygenation reaction pathways in the gas phase were studied over a commercially available Ni-based hydrotreating catalyst, whereas guaiacol hydrodeoxygenation reaction pathways were studied over two different commercially available Ni-based hydrotreating catalysts, a Fe-based catalyst, and a zeolite-based catalyst using online mass spectrometry analysis. Both Ni-based catalysts exhibited greater hydrodeoxygenation activity than the Fe-based and zeolite-based catalysts. Guaiacol conversion over each Ni-based catalyst reached 99.5 and 99.6%, whereas conversion over Fe-based and zeolite-based catalysts reached 27.0 and 22.7%, respectively, under the same reaction conditions. Experimental data from online mass spectrometry indicate that anisole and guaiacol undergo transalkylation and demethylation reactions followed by hydrodeoxygenation reactions over each catalyst tested.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available