4.5 Article

A novel large fragment deletion in PLS3 causes rare X-linked early-onset osteoporosis and response to zoledronic acid

Journal

OSTEOPOROSIS INTERNATIONAL
Volume 28, Issue 9, Pages 2691-2700

Publisher

SPRINGER LONDON LTD
DOI: 10.1007/s00198-017-4094-0

Keywords

Large fragment deletion; PLS3; X-linked early-onset osteoporosis; Zoledronic acid

Funding

  1. National Natural Science Foundation of China [81570802]
  2. National Key Research and Development Program of China [2016YFC0901501]
  3. CAMS Initiative for Innovative Medicine [2016-I2M-3-003]

Ask authors/readers for more resources

We identified a novel large fragment deletion from intron 9 to 3'UTR in PLS3 (E10-E16del) in one Chinese boy with X-linked early-onset osteoporosis and vertebral fractures, which expanded the pathogenic spectrum of X-linked early-onset osteoporosis. Treatment with zoledronic acid was beneficial for increasing BMD and reshaping the vertebral bodies of this patient. X-linked early-onset osteoporosis is a rare disease, which is characterized by low bone mineral density (BMD), vertebral compression fractures (VCFs), and/or long bone fractures. We aimed to detect the phenotype and the underlying pathogenic mutation of X-linked early-onset osteoporosis in a boy from a nonconsanguineous Chinese family. We investigated the pathogenic mutation of the patient with X-linked early-onset osteoporosis by targeted next-generation sequencing and confirmed it by Sanger sequencing. We also observed the effects of zoledronic acid on fracture frequency and BMD of the patient. Low BMD and multiple VCFs were the main phenotypes of X-linked early-onset osteoporosis. We identified a total of 12,229 bp deletion in PLS3, involving intron 9 to the 3'UTR (E10-E16 del). This large fragment deletion might be mediated by Alu repeats and microhomology of 26 bp at each breakpoint junction. Zoledronic acid treatment could significantly increase the Z-score of BMD and reshape the compressed vertebral bodies. We identified a large fragment deletion mutation in PLS3 for the first time and elucidated the possible mechanism of the deletion, which led to X-linked early-onset osteoporosis and multiple vertebral fractures. Our findings would enrich the etiology spectrum of this rare disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available