4.8 Article

A metal-organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 8, Issue 2, Pages 568-576

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ee02281e

Keywords

-

Funding

  1. National Natural Science Foundation of China [51322205, 21371014]
  2. New Star Program of Beijing Committee of Science and Technology [2012004]
  3. Ministry of education program for New Century Excellent Talents of China [NCET-11-0027]

Ask authors/readers for more resources

Rational design of non-noble metal catalysts with an electrocatalytic activity comparable or even superior to Pt is extremely important for future fuel cell-based renewable energy devices. Herein, we demonstrate a new concept that a metal-organic framework (MOF) can be used as a novel precursor to in situ encapsulate Co@Co3O4@C core@bishell nanoparticles (NPs) into a highly ordered porous carbon matrix (CM) (denoted as Co@Co3O4@C-CM). The central cobalt ions from the MOF are used as a metal source to produce Co metal cores, which are later transformed into a fancy Co@Co3O4 nanostructure via a controlled oxidation. The most notable feature of our Co@Co3O4@C-CM is that the highly ordered CM can provide much better transport pathways than the disordered pure MOF derived nanostructure that can facilitate the mass transport of O-2 and an electrolyte. As a result, the well-designed Co@Co3O4@C-CM derived from the MOF shows almost identical activity but superior stability and methanol tolerance for the ORR relative to the commercial Pt/C in alkaline medium. Our work reports a novel Co@Co3O4@C nanostructure from a MOF for the first time and also reveals the important role of the introduction of a highly ordered carbon matrix into the MOF derived catalyst in enhancing the ORR activity and stability. To the best of our knowledge, the Co@Co3O4@C-CM is the most efficient non-noble metal nanocatalyst ever reported for the ORR.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available