4.8 Review

Recent progress in solar cells based on one-dimensional nanomaterials

Journal

ENERGY & ENVIRONMENTAL SCIENCE
Volume 8, Issue 4, Pages 1139-1159

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4ee03853c

Keywords

-

Funding

  1. MOST [2011CB932503]
  2. NSFC [21225417]
  3. STCSM [12nm0503200]
  4. Fok Ying Tong Education Foundation
  5. Program for Special Appointments of Professors at Shanghai Institutions of Higher Learning
  6. Program for Outstanding Young Scholars from the Organization Department of the CPC Central Committee

Ask authors/readers for more resources

To develop solar cells with high power conversion efficiencies is critical for the sustainable development of human society, but remains a challenge. It is well recognized that rapid charge separation, transport, and collection are beneficial for highly efficient solar cells and require the optimization of the microscopic structures and morphologies. One-dimensional nanomaterials favor charge transport and collection obtained from large specific surface areas and a one-dimensional configuration, which are properties widely used in the fabrication of solar cells. In this review, the recent progress in high-performance solar cells based on one-dimensional nanomaterials is comprehensively described, with an emphasis on the most explored metals, metal oxides, carbon and conductive polymers. The impact of the one-dimensional structure on device performance is highlighted to elucidate the advantages of such nanomaterials. The future development of one-dimensional nanomaterials towards next-generation solar cells is finally summarized.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available