4.6 Article

Effects of Hydroiodic Acid Concentration on the Properties of CsPbl3 Perovskite Solar Cells

Journal

ACS OMEGA
Volume 3, Issue 9, Pages 11937-11944

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.8b01589

Keywords

-

Ask authors/readers for more resources

Inorganic cesium lead triiodide (CsPbI3) perovskite materials are becoming increasingly attractive for use in perovskite/silicon tandem solar cells, due to their almost ideal band gap energy (E g) of about 1.7 eV. To be useful as photovoltaic absorbers, the CsPbI3 must form the cubic or black phase (alpha-CsPbI3). To do so at relatively low temperatures, hydroiodic acid (HI) is required as a solution additive. This paper demonstrates CsPbI3 perovskite solar cells with an efficiency of 6.44%, formed using a HI concentration of 36 0/mL. This value is higher than the previous most commonly used HI additive concentration. Herein, by undertaking a systematic study of the HI concentration, we demonstrate that the structural, morphological, optical, and electrical properties of CsPbI3 solar cells, processed with this HI additive concentration, are superior.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available