4.6 Article

Piezoelectric sensor based on electrospun PVDF-MWCNT-Cloisite 30B hybrid nanocomposites

Journal

ORGANIC ELECTRONICS
Volume 50, Issue -, Pages 121-129

Publisher

ELSEVIER
DOI: 10.1016/j.orgel.2017.07.035

Keywords

Piezoelectric; Poly (vinylidene fluoride); Multi-walled carbon nanotube; Cloisite 30B; Electrospinning; Hybrid nanocomposite

Ask authors/readers for more resources

Piezoelectric materials have attracted substantial interest in applications such as sensors and actuators. Ferroelectric and piezoelectric polymeric fibers doped with nanoparticles are made for use in nanoscale electronic devices. In this paper, we report on poly (vinylidene fluoride) (PVDF) nanocomposites doped with different ratios of multi-walled carbon nanotube (MWCNT) and Cloisite 30B (OMMT) nanoclay prepared by electrospinning technique. The effect of different ratios of OMMT and MWCNT nanofillers and potential synergistic effect of these fillers on the crystalline structure of PVDF and the performance of resulting piezo-device were studied. Results showed that OMMT increases beta phase crystals and piezoelectric properties of PVDF as compared with MWCNT. Meanwhile, MWCNT decreases impedance and increases dielectric constant of PVDF as compared with OMMT. The acoustic absorption behavior of PVDF/MWCNT/OMMT hybrid nanocomposite was also investigated. It was found that the sound absorption efficiency of PVDF/MWCNT/OMMT hybrid nanocomposites was increased compared with that of pure PVDF fibers and film. No synergistic effect of OMMT and MWCNT on the properties of PVDF was observed. (C) 2017 Elsevier B. V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available