4.3 Article

Ecological speciation in darkness? Spatial niche partitioning in sibling subterranean spiders (Araneae:Linyphiidae:Troglohyphantes)

Journal

INVERTEBRATE SYSTEMATICS
Volume 32, Issue 5, Pages 1069-1082

Publisher

CSIRO PUBLISHING
DOI: 10.1071/IS17090

Keywords

-

Ask authors/readers for more resources

Speciation in subterranean habitats is commonly explained as the result of divergent selection in geographically isolated populations; conversely, the contribution of niche partitioning in driving subterranean species diversification has been rarely quantified. The present study integrated molecular and morphological data with a hypervolume analysis based on functional traits to investigate a potential case of parapatric speciation by means of niche differentiation in two sibling spiders inhabiting contiguous subterranean habitats within a small alpine hypogean site. Troglohyphantes giachinoi, sp. nov. and T. bornensis are diagnosed by small details of the genitalia, which are likely to be involved in a reproductive barrier. Molecular analysis recovered the two species as sister, and revealed a deep genetic divergence that may trace back to the Messinian (similar to 6 million years ago). The hypervolume analysis highlighted a marginal overlap in their ecological niches, coupled with morphological character displacement. Specifically, T. giachinoi, sp. nov. exhibits morphological traits suitable for thriving in the smaller pores of the superficial network of underground fissures (Milieu Souterrain Superficiel, MSS), whereas T. bornensis shows a greater adaptation to the deep subterranean habitat. Our results suggest that different selective regimes within the subterranean environment, i.e. deep caves v. MSS, may either drive local speciation or facilitate contiguous distributions of independently subterranean adapted species.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available