3.8 Proceedings Paper

Extended Importance Sampling for Reliability Analysis under Evidence Theory

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/1757-899X/359/1/012053

Keywords

-

Funding

  1. National Natural Science Foundation of China [U1530122, 51505398]

Ask authors/readers for more resources

In early engineering practice, the lack of data and information makes uncertainty difficult to deal with. However, evidence theory has been proposed to handle uncertainty with limited information as an alternative way to traditional probability theory. In this contribution, a simulation-based approach, called 'Extended importance sampling', is proposed based on evidence theory to handle problems with epistemic uncertainty. The proposed approach stems from the traditional importance sampling for reliability analysis under probability theory, and is developed to handle the problem with epistemic uncertainty. It first introduces a nominal instrumental probability density function (PDF) for every epistemic uncertainty variable, and thus an 'equivalent' reliability problem under probability theory is obtained. Then the samples of these variables are generated in a way of importance sampling. Based on these samples, the plausibility and belief (upper and lower bounds of probability) can be estimated. It is more efficient than direct Monte Carlo simulation. Numerical and engineering examples are given to illustrate the efficiency and feasible of the proposed approach.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available