4.6 Article

Very high efficiency optical coupler for silicon nanophotonic waveguide and single mode optical fiber

Journal

OPTICS EXPRESS
Volume 25, Issue 15, Pages 18462-18473

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.25.018462

Keywords

-

Categories

Funding

  1. NSF [0939514]
  2. Tsinghua-Berkeley Shenzhen Institute
  3. SinBeRISE program [NRF-CRP14-2014-03]

Ask authors/readers for more resources

Integrated optical circuits are poised to open up an array of novel applications. A vibrant field of research has emerged around the monolithic integration of optical components onto the silicon substrates. Typically, single mode optical fibers deliver the external light to the chip, and submicron single-mode waveguides then guide the light on-chip for further processing. For such technology to be viable, it is critically important to be able to efficiently couple light into and out of the chip platform, and between the different components, with low losses. Due to the large volume mismatch between a fiber and silicon waveguide (on the order of 600), it has been extremely challenging to obtain high coupling efficient with large tolerance. To date, demonstrated coupling has been relatively lossy and effective coupling requires impractical alignment of optical components. Here, we propose the use of a high contrast metastructure (HCM) that overcomes these issues, and effectively couples the off-chip, out-of-plane light waves into on-chip, in-plane waveguides. By harnessing the resonance properties of the metastructure, we show that it is possible to spatially confine the incoming free-space light into subwavelength dimensions with a near-unity (up to 98%) efficiency. The underlying coupling mechanism is analyzed and designs for practical on-chip coupler and reflector systems are presented. Furthermore, we explore the two-dimensional HCM as an ultra-compact wavelength multiplexer with superior efficiency (90%). (C) 2017 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available