4.6 Article

Ultra-compact polarization rotation in integrated silicon photonics using digital metamaterials

Journal

OPTICS EXPRESS
Volume 25, Issue 17, Pages 19721-19731

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.25.019721

Keywords

-

Categories

Funding

  1. MRSEC of National Science Foundation (NSF) [DMR-1121252]

Ask authors/readers for more resources

Polarization controlling devices such as polarization splitters and rotators are critical elements in integrated-photonic circuits that function via polarization-diversity schemes. Here, we present the design of an ultra-compact nanophotonic-polarization rotator (NPR) that rotates the polarization state from TE to TM with a simulated extinction ratio of 23dB over a coupling length of 5 mu m and an operating bandwidth of 40nm. This all-silicon device can be fabricated in a single lithography step and we have fabricated and characterized a preliminary device exhibiting 9dB extinction ratio. To emphasize the generality of our methodology, we also designed a NPR that can rotate the polarization state from TM to TE as well. A small device footprint is enabled by the evanescent coupling of guided modes enabled by computationally designed digital metamaterials. (C) 2017 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available