4.6 Article

Resolution enhancement method for lensless in-line holographic microscope with spatially-extended light source

Journal

OPTICS EXPRESS
Volume 25, Issue 20, Pages 24735-24744

Publisher

Optica Publishing Group
DOI: 10.1364/OE.25.024735

Keywords

-

Categories

Funding

  1. Shanghai Pujiang Program [12PJ1405100]
  2. National Natural Science Foundation of China (NSFC) [61205192]

Ask authors/readers for more resources

We propose a resolution enhancement method for lensless in-line holographic microscope (LIHM) with spatially-extended light source, where the resolution is normally deteriorated by the insufficient spatial coherence of the illumination. In our LIHM setup, a light-emitting diode (LED), which was a spatially-extended light source, directly illuminated the sample, and the in-line hologram were recorded by a CMOS imaging sensor located behind the sample. In our holographic reconstruction process, the in-line hologram was first deconvoled with a properly resized image of the LED illumination area, and then back-propagated with scalar diffraction formula to reconstruct the sample image. We studied the hologram forming process and showed that the additional deconvolution process besides normal scalar diffraction reconstruction in LIHM can effectively enhance the imaging resolution. The resolution enhancements capability was calibrated by numerical simulations and imaging experiments with the U.S. air force target as the sample. We also used our LIHM to image the wing of a green lacewing to further demonstrate the capability of our methods for practical imaging applications. Our methods provide a way for LIHM to achieve satisfactory resolution with less stringent requirement for spatial coherence of the source and could reduce the cost for compact imaging system. (C) 2017 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available