4.6 Article

Graphene on meta-surface for super-resolution optical imaging with a sub-10 nm resolution

Journal

OPTICS EXPRESS
Volume 25, Issue 13, Pages 14494-14503

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.25.014494

Keywords

-

Categories

Funding

  1. National Natural Science Foundation of China (NSFC) [61361166004, 61475156]
  2. Technology Department of Jilin Province [20140519002JH]

Ask authors/readers for more resources

Nowadays, wide-field of view plasmonic structured illumination method (WFPSIM) has been extensively studied and experimentally demonstrated in biological researches. Normally, noble metal structures are used in traditional WFPSIM to support ultrahigh wave-vector of SPs and an imaging resolution enhancement of 3-4 folds can be achieved. To further improve the imaging resolution of WFPSIM, we hereby propose a widefield optical nanoimaging method based on a hybrid graphene on meta-surface structure (GMS) model. It is found that an ultra-high wave-vector of graphene SPs can be excited by a metallic nanoslits array with localized surface plasmon enhancement. As a result, a standing wave surface plasmons (SW-SPs) interference pattern with a period of 11 nm for a 980 nm incident wavelength can be obtained. The potential application of the GMS for wide-field of view super-resolution imaging is discussed followed by simulation results which show that an imaging resolution of sub-10 nm can be achieved. The demonstrated method paves a new route for wide field optical nanoimaging, with applications e.g. in biological research to study biological processes occurring in cell membrane. (C) 2017 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available