4.6 Article

Signatures of nodeless multiband superconductivity and particle-hole crossover in the vortex cores of FeTe0.55Se0.45

Journal

PHYSICAL REVIEW B
Volume 98, Issue 14, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.98.144519

Keywords

-

Funding

  1. Swiss National Science Foundation under Division II

Ask authors/readers for more resources

Scanning tunneling experiments on single crystals of superconducting FeTe0.55Se0.45 have recently provided evidence for discrete energy levels inside vortices. Although predicted long ago, such levels are seldom resolved due to extrinsic (temperature, instrumentation) and intrinsic (quasiparticle scattering) limitations. We study a microscopic multiband model with parameters appropriate for FeTe0.55Se0.45. We confirm the existence of well-separated bound states and show that the chemical disorder due to random occupation of the chalcogen site does not affect significantly the vortex-core electronic structure. We further analyze the vortex bound states by projecting the local density of states on angular-momentum eigenstates. A rather complex pattern of bound states emerges from the multiband and mixed electron-hole nature of the normal-state carriers. The character of the vortex states changes from hole-like with negative angular momentum at low energy to electron-like with positive angular momentum at higher energy within the superconducting gap. We show that disorder in the arrangement of vortices most likely explains the differences found experimentally when comparing different vortices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available