4.6 Article

Measurement-based meshing, basis selection, and prior assignment in chemical species tomography

Journal

OPTICS EXPRESS
Volume 25, Issue 21, Pages 25135-25148

Publisher

OPTICAL SOC AMER
DOI: 10.1364/OE.25.025135

Keywords

-

Categories

Funding

  1. Natural Sciences and Engineering Research Council of Canada
  2. Natural Sciences and Engineering Research Council of Canada (PGS)
  3. Natural Sciences and Engineering Research Council of Canada (CGS)

Ask authors/readers for more resources

Gas distributions imaged by chemical species tomography (CST) vary in quality due to the discretization scheme, arrangement of optical paths, errors in the measurement model, and prior information included in reconstruction. There is currently no mathematically-rigorous framework for comparing the finite bases available to discretize a CST domain. Following from the Bayesian formulation of tomographic inversion, we show that Bayesian model selection can identify the mesh density, mode of interpolation, and prior information best-suited to reconstruct a set of measurement data. We validate this procedure with a simulated CST experiment, and generate accurate reconstructions despite limited measurement information. The flow field is represented using the finite element method, and Bayesian model selection is used to choose between three forms of polynomial support for a range of mesh resolutions, as well as four priors. We show that the model likelihood of Bayesian model selection is a good predictor of reconstruction accuracy. (C) 2017 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available