4.5 Article

Field measurements of methylglyoxal using proton transfer reaction time-of-flight mass spectrometry and comparison to the DNPH-HPLC-UV method

Journal

ATMOSPHERIC MEASUREMENT TECHNIQUES
Volume 11, Issue 10, Pages 5729-5740

Publisher

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/amt-11-5729-2018

Keywords

-

Funding

  1. Mistrals/ChArMEx program, ADEME
  2. French environmental ministry
  3. CaPPA projects
  4. French National Research Agency (ANR) through the PIA (Programme d'Investissement d'Avenir) [ANR-11-LABX-0005-01]
  5. Regional Council Nord-Pas de Calais
  6. European Funds for Regional Economic Development (FEDER)
  7. European Union Seventh Framework Programme [293897]
  8. DEFIVOC project
  9. CARBOSOR/Primequal
  10. Region Hauts-de-France
  11. Ministere de l'Enseignement Superieur et de la Recherche
  12. European Fund for Regional Economic Development through the CLIMIBIO project

Ask authors/readers for more resources

Methylglyoxal (MGLY) is an important atmospheric alpha-dicarbonyl species for which photolysis acts as a significant source of peroxy radicals, contributing to the oxidizing capacity of the atmosphere and, as such, the formation of secondary pollutants such as organic aerosols and ozone. However, despite its importance, only a few techniques exhibit time resolutions and detection limits that are suitable for atmospheric measurements. This study presents the first field measurements of MGLY by proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) performed during the ChArMEx SOP2 field campaign. This campaign took place at a Mediterranean site characterized by intense biogenic emissions and low levels of anthropogenic trace gases. Concomitant measurements of MGLY were performed using the 2,4-dinitrophenylhydrazine (DNPH) derivatization technique and high performance liquid chromatography (HPLC) with UV detection. PTR-ToF-MS and DNPH-HPLC measurements were compared to determine whether these techniques can perform reliable measurements of MGLY. Ambient time series revealed levels of MGLY ranging from 28 to 365 pptv, with a clear diurnal cycle due to elevated concentrations of primary biogenic species during the daytime, and its oxidation led to large production rates of MGLY. A scatter plot of the PTR-ToF-MS and DNPH-HPLC measurements indicates a reasonable correlation (R-2 = 0.48) but a slope significantly lower than unity (0.58 +/- 0.05) and a significant intercept of 88.3 +/- 8.0 pptv. A careful investigation of the differences between the two techniques suggests that this disagreement is not due to spectrometric interferences from H3O+ (H2O)(3) or methyl ethyl ketone (or butanal) detected at m/z 73.050 and m/z 73.065, respectively, which are close to the MGLY m/z of 73.029. The differences are more likely due to uncorrected sampling artifacts such as overestimated collection efficiency or loss of MGLY into the sampling line for the DNPH-HPLC technique or unknown isobaric interfering compounds such as acrylic acid and propanediol for the PTR-ToF-MS. Calculations of MGLY loss rates with respect to OH oxidation and direct photolysis indicate similar contributions for these two loss pathways.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available